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This paper introduces a mathematical model which describes the dynamics 
of the spread of HIV in the human body. Human immunodeficiency virus 
infection destroys the body immune system, increases the risk of certain 
pathologies, damages body organs such as the brain, kidney and heart or 
cause the death. Unfortunately, this infection disease currently has no cure to 
control the diseases. We propose a fractional order model in this paper to 
describe the dynamics of human immunodeficiency virus (HIV) infection. The 
Caputo fractional derivative operator of order 𝛼 ∈ (0,1] is employed to 
obtain the system of fractional differential equations. The basic reproductive 
number is derived for a general viral production rate which determines the 
local stability of the infection free equilibrium. The solution of the time 
fractional model has been procured by employing Laplace Adomian 
decomposition method (LADM) and the accuracy of the scheme is presented 
by convergence analysis Moreover, numerical simulation are performed to 
study the dynamical behavior of solution of the models. Simulations of 
different epidemiological classes at the effect of the fractional parameters 𝛼 
revealed that most undergoing treatment join the recovered class. The 
results show the both viral production rate and death rate of infected cells 
play an important role the disease in the society. 
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1. Introduction 

*Human Immunodeficiency Virus (HIV) is 
responsible for AIDS which belongs to family of 
retroviruses. In United States during 1980s first case 
of immune deficiency syndrome occurred among 
homosexual men. Human immunodeficiency virus 
identified during 1983 by the etiological agent which 
is caused AIDS disease (CDC, 1999a-f). Another way 
of spreading HIV through sexual contact within the 
closed network among injection drug users, which 
are characterized by multiple sex partners, 
unprotected sexual intercourse and exchange of sex 
for money (Friedman et al., 1995). The inclusion of 
alcohol and other non-injection substances to this 
lethal mixture only increases the HIV/AIDS caseload 
(Grella et al., 1995; Word and Bowser, 1997). A 
major risk factor for HIV/AIDS among injection drug 
users is crack use; one study found that crack 
abusers reported more sexual partners in the last 12 
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months (Word and Bowser, 1997; Gao et al., 1999; 
Zhu et al., 1998).   

The virus HIV is a reason for spread the AIDS and 
it is considered by severe decreases in CD4+T cells, 
which means a person who catch this disease grows 
a weak immune system and becomes susceptible to 
contracting life-mortal infections. AIDS occurs late in 
HIV disease. Many countries are strictly noticed HIV 
cases now and get the positive results against the 
infection in the early stages and because counting 
only AIDS cases is no longer satisfactory for 
projecting trends to pandemic (CDC, 1993; 1998). 
Since in recent years fractional calculus has attracted 
great attentions from researchers and different 
aspects of the said subject is under consideration for 
research. This is due to the fact that fractional 
derivative is important tool to explain the dynamical 
behavior of various physical systems. The strength of 
this differential operator is their nonlocal 
characteristics which do not exist in the integer 
order differential operators. The distinguished 
features of fractional differential equations are that 
it outlines memory and transmitted properties of 
numerous mathematical models. As a fact, that 
fractional order models are more realistic and 
practical than the classical integer order models. 
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Fractional order derivative produces greater degree 
of freedom in these models. Arbitrary order 
derivatives are powerful tools for the discretion of 
the dynamical behavior of various biomaterial and 
systems. The most iterating feature of these models 
is their global (nonlocal) characteristics which do 
not exist in the classical order models (Arruda et al., 
2015).  

Laplace transform method is a useful technique in 
different field of biological science, engineering and 
applied mathematics. The coupling of ADM and 
Laplace transform leads to a powerful method 
known as Laplace Adomain decomposition method. 
With the help of Laplace transform, we convert a 
differential equation to an algebraic equation and the 
nonlinear terms are decomposed in terms of 
Adomain polynomials. The given numerical 
technique works powerfully for a system of 
deterministic as well as stochastic differential 
equations. More unambiguously, it can be used for 
classical as well as fractional order system of linear 
and nonlinear ordinary. Further it has no need of 
pre-defined step size like RK4. Also, this method 
does not depend upon on a parameter like needed 
for homotopy perturbation method (HPM) and 
homotopy analysis method (HAM). Although the 
solutions obtained vis this method are the same as 
obtained by ADM, for detail see (Haq et al., 2017; 
Jafari et al., 2011a;b; Zhu et al., 1998).  

2. Mathematical model 

In model formulation of HIV we uses different 
variables here x represents the compartment of 
susceptible cells (i.e., the compartment of those 
individuals which are not infected an able to catch 
the disease), y compartment represents the already 
infected cells, v represents the free viruses in the 
body, z represents the defense cells (CD8+T and B) 
and 𝑧𝑎  corresponds to the activated defense cells 
(Jafari et al., 2011a). The system is given as 
 

𝑑𝑥

𝑑𝑡
= 𝜆𝑥 − 𝜇𝑥𝑥 − 𝛽𝑣𝑥𝑣                    (1) 

𝑑𝑦

𝑑𝑡
= 𝛽𝑣𝑥𝑣 − 𝜇𝑦𝑦 − 𝑃𝑦𝑦𝑍𝑎                     (2) 

𝑑𝑣

𝑑𝑡
= 𝑘𝑣𝜇𝑦𝑦 − 𝜇𝑣𝑣 − 𝑃𝑣𝑣𝑍𝑎                    (3) 

𝑑𝑧

𝑑𝑡
= 𝜆𝑧 − 𝜇𝑧𝑧 − 𝛽𝑧𝑧𝑣                                     (4) 

𝑑𝑧𝑎

𝑑𝑡
= 𝛽𝑧𝑧𝑣 − 𝜇𝑧𝑧𝑎                                       (5) 
 

with initial conditions: 
 

𝑥(0) =
𝜆𝑥

𝜇𝑥
 , 𝑦(0) = 0 , 𝑣(0) = 𝑣0 , 𝑧(0) =

𝜆𝑧

𝜇𝑧
 , 𝑧𝑎(0) = 0   (6) 

 

Here uninfected cells x are formed at a constant 
supply rate 𝜆𝑥  and decay at rate 𝜇𝑥. These cells are 
infected by the free viruses at rate 𝛽𝑣 . As for the 
infected cells  𝑦, they are produced from the 
interaction of their uninfected counter parts and the 
viruses at rate 𝛽𝑣 , decay at rate 𝜇𝑦 and are reduced 

by the activated defense cells at rate 𝑃𝑣 . Free viruses 
 𝑣 are made from infected cells at rate 𝑘𝑣 , decay at 
rate 𝜇𝑣 and are eliminated by the means of the 
activated defense cells 𝑧𝑎  at rate 𝑃𝑣 . The defense 

cells, in turn are generated at a constant rate 𝜆𝑧 , and 
decay at rate 𝜇𝑧 and activated by the viruses at rate 
𝛽𝑧 . The activated defense cells are generated from 
the defense cells in the presence of the virus, at rate 
𝛽𝑧 , and decay at rate 𝜇𝑧 . 

The purposed model of HIV in fractional 
differential equation (FDEs) is as follows 
 

𝐷𝛼1𝑥(𝑡) = 𝜆𝑥 − 𝜇𝑥𝑥 − 𝛽𝑣𝑥𝑣                    (7) 
𝐷𝛼2𝑦(𝑡) = 𝛽𝑣𝑥𝑣 − 𝜇𝑦𝑦 − 𝑃𝑦𝑦𝑍𝑎                    (8) 

𝐷𝛼3𝑣(𝑡) = 𝑘𝑣𝜇𝑦𝑦 − 𝜇𝑣𝑣 − 𝑃𝑣𝑣𝑍𝑎                    (9) 

𝐷𝛼4𝑧(𝑡) = 𝜆𝑧 − 𝜇𝑧𝑧 − 𝛽𝑧𝑧𝑣                  (10) 
𝐷𝛼5𝑧𝑎(𝑡) = 𝛽𝑧𝑧𝑣 − 𝜇𝑧𝑧𝑎                  (11) 

 

with following initial conditions 
 

𝑙𝑒𝑡   𝑥(0) = 𝑁1 , 𝑦(0) = 𝑁2 , 𝑣(0) = 𝑁3 , 𝑧(0) = 𝑁4 , 𝑧𝑎(0) =
𝑁5                                     (12) 

 

For this model the initial conditions are not 
independent, since they must satisfy the condition 
𝑁1 + 𝑁2 + 𝑁3 + 𝑁4 + 𝑁5 = 𝑁 where 𝑁 is the total 
population in the system.  

3. Preliminaries 

In this section, we give some fundamental results 
and definitions from fractional calculus. For detailed 
over view of the topic readers are referred to (Haq et 
al., 2017; Johnston et al., 2016; Jafari et al., 2011a; 
2011b). 

 

Definition 3.1: The Riemann-Liouville fractional 
integration of order 𝛼 is defined as: 
 

(𝐽𝑡0

𝛼  𝑓)(𝑡) =
1

𝛼
 ∫ (𝑡 − 𝑠)𝛼−1𝛼

𝑡0
𝑓(𝑠)𝑑𝑠,                𝛼 > 0, 𝑡 > 𝑡0  

 (𝐽𝑡0

𝛼  𝑓)(𝑡) = 𝑓(𝑡)  
 

The Riemann-Liouville derivative has certain 
disadvantages such that the fractional derivative of a 
constant is not zero. Therefore, we will make use of 
Caputo's definition owing to its convenience for 
initial conditions of the fractional differential 
equations. 

 

Definition 3.2: The Riemann-Liouville fractional 
integration of order 𝛼 is defined as: 
 

𝐷𝛼𝑓(𝑡) = 𝐷𝑛(𝐽𝑛−𝛼𝑓(𝑡)), 
𝐷∗

𝛼𝑓(𝑡) = (𝐽𝑛−𝛼(𝐷𝑛𝑓(𝑡)), 
 

where 𝑛 − 1 < 𝛼 ≤ 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁 , 𝑓 is the given 
function, It is known that (𝐽𝑡0

𝛼𝑓)(𝑡) → 𝑓(𝑡) as 𝛼 → 1. 
 

Definition 3.3: The definitions of Laplace transform 
of Caputo's derivative and Mittag-Leffler function in 
two arguments is written as 
 

𝐿{𝐷𝛼𝑓(𝑡)} = 𝑠𝛼𝐹(𝑠) − ∑ 𝑠𝛼−𝑖−1 𝑓𝑖(0),          𝑛 − 1 <𝑛−1
𝑖=0

𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁  

4. Mathematical analysis 

Disease Free Equilibrium: To evaluate the 
equilibrium point, we take 
 

𝐷𝛼1𝑥(𝑡) = 𝐷𝛼2𝑦(𝑡) = 𝐷𝛼3𝑣(𝑡) = 𝐷𝛼4𝑧(𝑡) = 𝐷𝛼5(𝑧)𝑎(𝑡) =
0                                      (13) 
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When naturally, the disease die out then the 
solution of the above system asymptotically 
approaches a disease free population or equilibrium 

is of the form i.e., 𝐸0 = (𝑥, 𝑦, 𝑣, 𝑧, 𝑧𝑎) = (
𝜆𝑥

𝜇𝑥
, 0,0,

𝜆𝑧

𝜇𝑧
, 0). 

 
Theorem 4.1: The disease-free equilibrium𝐸0is 
locally asymptotically stable if 𝑅0 < 1 and is unstable 
otherwise (Arruda et al., 2015). 
 

Reproductive number: In this system the 

threshold result of this equilibrium is 𝑅0 =
𝜆𝑥𝛽𝑣𝑘𝑣

𝜇𝑥𝜇𝑣
<

1, so this is in disease free state. 
Non negative solution: Let 𝑅+

5 = {𝑤 ∈ 𝑅5, 𝑤 ≥ 0} 

and 𝑤(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑣(𝑡), 𝑧(𝑡), 𝑧𝑎(𝑡))
𝑇

. 

 
Lemma 1: Let ℎ(𝑥) ∈ 𝐶 ∈ [𝑎, 𝑏] and 𝐷𝛼ℎ(𝑥) ∈
𝐶[𝑎, 𝑏] for 0 < 𝛼 ≤ 1 then, we have ℎ(𝑠) = ℎ(𝑎) +

1

(𝛼+1)!
 𝐷𝛼ℎ(𝜂)(𝑥 − 𝛼)𝛼 with 0 ≤ 𝜂 ≤ 𝑤 for all  𝑤 ∈

(𝑎, 𝑏]. 
 

Theorem 4.2: There is a unique solution for the 
initial value problem given by (7)-(11), and the 
solution remains in 𝑅5, 𝑤 ≥ 0. 
 
Proof: The uniqueness and existence for the solution 
of (7)-(11), in (0, 𝛼). Our aim is to show the domain 
𝑅5, 𝑤 ≥ 0 is positively invariant. Since 
 
𝐷𝛼1𝑥|𝑥=0 =  𝜆𝑥   ≥ 0  
𝐷𝛼2𝑦|𝑦=0 =  𝛽𝑣𝑥𝑣  ≥ 0  

𝐷𝛼3𝑣|𝑣=0 =  𝑘𝑣𝜇𝑦𝑦  ≥ 0 

𝐷𝛼4𝑧|𝑧=0 =  𝜆𝑧   ≥ 0 
𝐷𝛼5(𝑧)𝑎|(𝑧)𝑎=0 =  𝛽𝑧𝑧𝑣  ≥ 0 

 
The nonnegative solution satisfied the vector field 

points into𝑅+
5 .      

5. The Laplace-Adomian decomposition method 

Consider the fractional-order epidemic model (7) 
- (11) subject to the initial condition (12). The 
nonlinear terms in this model is 𝑥𝑣, 𝑦𝑧𝑎, 𝑣𝑧𝑎 , 𝑧𝑣 and 
𝜆𝑥 , 𝜇𝑥 , 𝛽𝑣 , 𝜇𝑦 , 𝑃𝑦𝑘𝑣 , 𝜇𝑣 , 𝑃𝑣 , 𝜇𝑧 , 𝜆𝑧 , 𝛽𝑧are known 

constants. For𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 𝛼5 = 1 the 
fractional order model converts to the classical 
epidemic model. By using Laplace transform on 
system (7) - (11), we get 
 
𝐿{𝐷𝛼1𝑥(𝑡)} = 𝜆𝑥𝐿{1} − 𝜇𝑥𝐿{𝑥} − 𝛽𝑣𝐿{𝑥𝑣}                (14) 
𝐿{𝐷𝛼2𝑦(𝑡)} = 𝛽𝑣𝐿{𝑥𝑣} − 𝜇𝑦𝐿{𝑦} − 𝑃𝑦𝐿{𝑦𝑧𝑎}                (15) 

𝐿{𝐷𝛼3𝑣(𝑡)} = 𝑘𝑣𝐿{𝜇𝑦𝑦} − 𝜇𝑣𝐿{𝑣} − 𝑃𝑣𝐿{𝑣𝑧𝑎}                (16) 

𝐿{𝐷𝛼4𝑧(𝑡)} = 𝜆𝑧𝐿{1} − 𝜇𝑧𝐿{𝑧} − 𝛽𝑧𝐿{𝑧𝑣}                (17) 
𝐿{𝐷𝛼5𝑧𝑎(𝑡)} = 𝛽𝑧𝐿{𝑧𝑣} − 𝜇𝑧𝐿{𝑧𝑎}.                 (18) 
 

Using property of Laplace transform, we get 

𝑆𝛼1𝐿{𝑥} − 𝑆𝛼1−1𝑥(0) =
𝜆𝑥

𝑆
− 𝜇𝑥𝐿{𝑥} − 𝛽𝑣𝐿{𝑥𝑣}                (19) 

𝑆𝛼2𝐿{𝑦} − 𝑆𝛼2−1𝑦(0) = 𝛽𝑣𝐿{𝑥𝑣} − 𝜇𝑦𝐿{𝑦} − 𝑃𝑦𝐿{𝑦𝑍𝑎} (20) 

𝑆𝛼3𝐿{𝑣} − 𝑆𝛼3−1𝑣(0) = 𝑘𝑣𝐿{𝜇𝑦𝑦} − 𝜇𝑣𝐿{𝑣} − 𝑃𝑣𝐿{𝑣𝑍𝑎} 

                    (21) 

𝑆𝛼4𝐿{𝑧} − 𝑆𝛼4−1𝑧(0) =
𝜆𝑧

𝑆
− 𝜇𝑧𝐿{𝑧} − 𝛽𝑧𝐿{𝑧𝑣}                 (22) 

𝑆𝛼5𝐿{𝑧𝑎} − 𝑆𝛼5−1𝑧𝑎(0) =  𝛽𝑧𝐿{𝑧𝑣} − 𝜇𝑧𝐿{𝑧𝑎}.                  (23)
  

Using initial conditions we have: 
 

𝐿{𝑥} =
𝑥(0)

𝑠
+

𝜆𝑥

𝑠𝛼1−1
−

𝜇𝑥

𝑆𝛼1
𝐿{𝑥} −

𝛽𝑣

𝑠𝛼1
𝐿{𝑥𝑣}                           (24) 

𝐿{𝑦} =
𝑦(0)

𝑠
+

𝛽𝑣

𝑠𝛼2
𝐿{𝑥𝑣} −

𝜇𝑦

𝑠𝛼2
𝐿{𝑦} −

𝑝𝑦

𝑠𝛼2
𝐿{𝑦𝑍𝑎}               (25) 

𝐿{𝑣} =
𝑣(0)

𝑠
+

𝑘𝑣

𝑠𝛼3
𝐿{𝜇𝑦𝑦} −

𝜇𝑣

𝑠𝛼3
𝐿{𝑣} −

𝑝𝑣

𝑠𝛼3
𝐿{𝑣𝑍𝑎}              (26) 

𝐿{𝑧} =
𝑧(0)

𝑠
+

𝜆𝑧

𝑠
−

𝜇𝑧

𝑠𝛼4
𝐿{𝑧} −

𝛽𝑧

𝑠𝛼4
𝐿{𝑧𝑣}                                  (27) 

𝐿{𝑧𝑎} =  
𝑧𝑎(0)

𝑆
+

𝛽𝑧

𝑠𝛼5
𝐿{𝑧𝑣} −

𝜇𝑧

𝑠𝛼5
𝐿{𝑧𝑎}.                                  (28) 

 

The method assumes the solution as an infinite 
series: 
 
𝑥 = ∑ 𝑥𝑘

∞
𝑘=0  , 𝑦 = ∑ 𝑦𝑘

∞
𝑘=0  , 𝑣 = ∑ 𝑣𝑘

∞
𝑘=0  , 𝑧 =

∑ 𝑧𝑘
∞
𝑘=0  , 𝑧𝑎 = ∑ (𝑧𝑎)𝑘

∞
𝑘=0   

 

The non-linearity 𝑥𝑣 , 𝑦𝑧𝑎 , 𝑣𝑧𝑎  , 𝑧𝑣 are decomposed 
as: 

 
𝑥𝑣 = ∑ 𝐴𝑘

∞
𝑘=0  , 𝑦𝑧𝑎 = ∑ 𝐵𝑘

∞
𝑘=0  , 𝑣𝑧𝑎 = ∑ 𝐶𝑘

∞
𝑘=0  , 𝑧𝑣 =

∑ 𝐷𝑘
∞
𝑘=0   

 

where 𝐴𝑘 , 𝐵𝑘 , 𝐶𝑘, 𝐷𝑘  are so called Adomian 
polynomials given as: 
 

𝐴𝑘 =
1

𝑘!
 

𝑑𝑘

𝑑𝜆𝑘 | [∑ 𝜆𝑗𝑥𝑗
𝑘
𝑗=0 ∑ 𝜆𝑗𝑣𝑗

𝑘
𝑗=0 ]|

𝜆=0
  

𝐵𝑘 =
1

𝑘!
 

𝑑𝑘

𝑑𝜆𝑘
| [∑ 𝜆𝑗𝑦𝑗

𝑘
𝑗=0 ∑ 𝜆𝑗(𝑧𝑎)𝑗

𝑘
𝑗=0 ]|

𝜆=0
  

𝐶𝑘 =
1

𝑘!
 

𝑑𝑘

𝑑𝜆𝑘 | [∑ 𝜆𝑗𝑣𝑗
𝑘
𝑗=0 ∑ 𝜆𝑗(𝑧𝑎)𝑗

𝑘
𝑗=0 ]|

𝜆=0
  

𝐷𝑘 =
1

𝑘!
 

𝑑𝑘

𝑑𝜆𝑘
| [∑ 𝜆𝑗𝑧𝑗

𝑘
𝑗=0 ∑ 𝜆𝑗𝑣𝑗

𝑘
𝑗=0 ]|

𝜆=0
  

 

now from equation the required result is: 
 

𝐿{𝑥0} =
𝑁1

𝑆
+

𝜆𝑥

𝑆𝛼1−1  , 𝐿{𝑥1} = −
𝜇𝑥

𝑆𝛼1
𝐿{𝑥0} −

𝛽𝑣

𝑠𝛼1
𝐿{𝐴0}, … , 𝐿{𝑥𝑘+1} = −

𝜇𝑥

𝑆𝛼1
𝐿{𝑥𝑘} −

𝛽𝑣

𝑠𝛼1
𝐿{𝐴𝑘}                 

                  (29)  

𝐿{𝑦0} =
𝑁2

𝑆
, 𝐿{𝑦1} =

𝛽𝑣

𝑠𝛼2
𝐿{𝐴0} −

𝜇𝑦

𝑠𝛼2
𝐿{𝑦0} −

𝑝𝑦

𝑠𝛼2
𝐿{𝐵0}, … , 𝐿{𝑦𝑘+!} =

𝛽𝑣

𝑠𝛼2
𝐿{𝐴𝑘} −

𝜇𝑦

𝑠𝛼2
𝐿{𝑦𝑘} −

𝑝𝑦

𝑠𝛼2
𝐿{𝐵𝑘}    

                                    (30) 

𝐿{𝑣0} =
𝑁3

𝑆
, 𝐿{𝑣1} =

𝑘𝑣𝜇𝑦

𝑠𝛼3
𝐿{𝑦0} −

𝜇𝑣

𝑠𝛼3
𝐿{𝑣0} −

𝑝𝑣

𝑠𝛼3
𝐿{𝐶0}, … .      𝐿{𝑣𝑘+1} =

𝑘𝑣𝜇𝑦

𝑠𝛼3
𝐿{𝑦𝑘} −

𝜇𝑣

𝑠𝛼3
𝐿{𝑣𝑘} −

𝑝𝑣

𝑠𝛼3
𝐿{𝐶𝑘}

                 (31) 

𝐿{𝑧0} =
𝑁4

𝑆
 +

𝜆𝑧

𝑆𝛼4−1 , 𝐿{𝑧1} = −
𝜇𝑧

𝑠𝛼4
𝐿{𝑧0} −

𝛽𝑧

𝑠𝛼4
𝐿{𝐷0}, … , 𝐿{𝑧𝑘+1} = −

𝜇𝑧

𝑠𝛼4
𝐿{𝑧𝑘} −

𝛽𝑧

𝑠𝛼4
𝐿{𝐷𝑘}                                       

                 (32) 

𝐿{(𝑍𝑎)0} =
𝑁5

𝑆
, 𝐿{(𝑍𝑎)1} =  

𝛽𝑧

𝑠𝛼5
𝐿{𝐷1} −

𝜇𝑧

𝑠𝛼5
𝐿{(𝑍𝑎)0}, … , 𝐿{(𝑍𝑎)𝑘+1} =  

𝛽𝑧

𝑠𝛼5
𝐿{𝐷𝑘} −

𝜇𝑧

𝑠𝛼5
𝐿{(𝑍𝑎)𝑘} 

                       (33) 
 

The aim is to study the mathematical behavior of 
the solution 𝑥(𝑡), 𝑦(𝑡), 𝑣(𝑡), 𝑧(𝑡), 𝑧𝑎(𝑡) for the 
different values of 𝛼. by applying the inverse Laplace 
transform to both sides of above equations. We 
computed the first three terms: 

 

𝑥0 = 1000 + 20
𝑡𝛼1

𝛼1!
 , 𝑦0 = 0 , 𝑣0 = 10−3 , 𝑧0 = 500 +

20.20
𝑡𝛼4

𝛼4!
 , (𝑍𝑎)0 = 0  
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 𝑥1 = −
20.000024𝑡𝛼1

Γ(𝛼1+1)
−

0.40000048𝑡2𝛼1

Γ(2𝛼1+1)
, 𝑦1 =

2.4×10−5𝑡𝛼2

Γ(𝛼2+1)
−

4.8×10−7𝑡𝛼1+𝛼2

Γ(𝛼1+𝛼2+1)
,   𝑣1 = −

2.4×10−3𝑡𝛼3

Γ(𝛼3+1)
 

𝑧1 = −
20.0000025𝑡𝛼4

Γ(𝛼4+1)
−

0.800000𝑡2𝛼4

Γ(2𝛼4+1)
, (𝑧𝑎)1 =

2.5×10−6𝑡𝛼5

Γ(𝛼5+1)
−

0.40000048𝑡𝛼4+𝛼5

Γ(𝛼4+𝛼5+1)
 

𝑥2 =
0.400000528𝑡2𝛼1

Γ(2𝛼1+1)
+

9.60801153𝑡3𝛼1

Γ(3𝛼1+1)
+

5.76×10−5𝑡𝛼1+𝛼3

Γ(𝛼1+𝛼3+1)
+

1.152×10−6(𝛼1+𝛼3)!𝑡2𝛼1+𝛼3

𝛼1!𝛼3!Γ(2𝛼1+𝛼3+1)
  

𝑦2 = −
5.76×10−5𝑡𝛼2+𝛼3

Γ(𝛼2+𝛼3+1)
−

5.76×10−6𝑡2𝛼1

Γ(2𝛼1+1)
+

1.152×10−7𝑡𝛼1+2𝛼2

Γ(𝛼1+2𝛼2+1)
−

1.152×10−6(𝛼1+𝛼3)!𝑡𝛼1+𝛼2+𝛼3

𝛼1!𝛼3!Γ(𝛼1+𝛼2+𝛼3+1)Γ(𝛼3+1)
−

4.48×10−7𝑡𝛼1+𝛼2

Γ(𝛼1+𝛼2+1)
−

9.60001152×10−9𝑡2𝛼1+𝛼2

Γ(2𝛼1+𝛼2+1)
  

𝑣2 =
2.0736×10−3𝑡𝛼2+𝛼3

Γ(𝛼2+𝛼3+1)
+

5.76×10−3𝑡2𝛼3

Γ(2𝛼3+1)
−

5×10−11𝑡𝛼3+𝛼5

Γ(𝛼3+𝛼5+1)
+

4.1472×10−5𝑡𝛼1+𝛼2+𝛼3

Γ(𝛼1+𝛼2+𝛼3+1)
−

2×10−12𝑡𝛼3+𝛼4+𝛼5

Γ(𝛼3+𝛼4+𝛼5+1)
  

𝑧2 =
0.8000011𝑡2𝛼4

Γ(2𝛼4+1)
+

0.032000008  𝑡3𝛼4

Γ(3𝛼4+1)
+

2.4×10−7(𝛼3+𝛼4)!𝑡𝛼3+2𝛼4

𝛼4!𝛼3!Γ(𝛼3+2𝛼4+1)
+

6×10−6𝑡𝛼3+𝛼4

Γ(𝛼3+𝛼4+1)
  

(𝑧𝑎)2 =
6×10−6𝑡𝛼3+𝛼5

Γ(𝛼3+𝛼5+1)
−

4.0000005×10−9  𝑡2𝛼4+𝛼5

Γ(2𝛼4+𝛼5+1)
−

2.4×10−7(𝛼3+𝛼4)!𝑡𝛼3+𝛼4+𝛼5

𝛼4!𝛼3!Γ(𝛼3++𝛼4+𝛼5+1)
−

1×10−7𝑡𝛼5+𝛼4

Γ(𝛼5+𝛼4+1)
−

1×10−7𝑡2𝛼5

Γ(2𝛼5+1)
−

4×10−9  𝑡𝛼4+2𝛼5

Γ(𝛼4+2𝛼5+1)
  

 

The series solution for fractional order differential 
equation is as follows: 
 

𝑥(𝑡) = 1000 −
0.000024𝑡𝛼1

Γ(𝛼1+1)
+

4.8×10−8𝑡2𝛼1

Γ(2𝛼1+1)
+

9.60801153𝑡3𝛼1

Γ(3𝛼1+1)
+

5.76×10−5𝑡𝛼1+𝛼3

Γ(𝛼1+𝛼3+1)
+

1.152×10−6(𝛼1+𝛼3)!𝑡2𝛼1+𝛼3

𝛼1!𝛼3!Γ(2𝛼1+𝛼3+1)
+ ⋯                (34) 

𝑦(𝑡) =
2.4×10−5𝑡𝛼2

Γ(𝛼2+1)
−

9.28×10−7𝑡𝛼1+𝛼2

Γ(𝛼1+𝛼2+1)
−

5.76×10−5𝑡𝛼2+𝛼3

Γ(𝛼2+𝛼3+1)
−

5.76×10−6𝑡2𝛼1

Γ(2𝛼1+1)
+

1.152×10−7𝑡𝛼1+2𝛼2

Γ(𝛼1+2𝛼2+1)
−

1.152×10−6(𝛼1+𝛼3)!𝑡𝛼1+𝛼2+𝛼3

𝛼1!𝛼3!Γ(𝛼1+𝛼2+𝛼3+1)Γ(𝛼3+1)
−

9.60001152×10−9𝑡2𝛼1+𝛼2

Γ(2𝛼1+𝛼2+1)
+ ⋯    (35) 

𝑣(𝑡) = 10−3 −
2.4×10−3𝑡𝛼3

Γ(𝛼3+1)
+

2.0736×10−3𝑡𝛼2+𝛼3

Γ(𝛼2+𝛼3+1)
+

5.76×10−3𝑡2𝛼3

Γ(2𝛼3+1)
−

5×10−11𝑡𝛼3+𝛼5

Γ(𝛼3+𝛼5+1)
+

4.1472×10−5𝑡𝛼1+𝛼2+𝛼3

Γ(𝛼1+𝛼2+𝛼3+1)
−

2×10−12𝑡𝛼3+𝛼4+𝛼5

Γ(𝛼3+𝛼4+𝛼5+1)
+ ⋯                  (36) 

𝑧(𝑡) = 500 + 20.20
𝑡𝛼4

𝛼4!
−

20.0000025𝑡𝛼4

Γ(𝛼4+1)
−

1.1×10−6𝑡2𝛼4

Γ(2𝛼4+1)
+

0.032000008  𝑡3𝛼4

Γ(3𝛼4+1)
+

2.4×10−7(𝛼3+𝛼4)!𝑡𝛼3+2𝛼4

𝛼4!𝛼3!Γ(𝛼3+2𝛼4+1)
+

6×10−6𝑡𝛼3+𝛼4

Γ(𝛼3+𝛼4+1)
+ ⋯

                    (37) 

(𝑧𝑎)(𝑡) =
2.5×10−6𝑡𝛼5

Γ(𝛼5+1)
−

0.40000048𝑡𝛼4+𝛼5

Γ(𝛼4+𝛼5+1)
+

0.8000011𝑡2𝛼4

Γ(2𝛼4+1)
+

0.032000008  𝑡3𝛼4

Γ(3𝛼4+1)
+

2.4×10−7(𝛼3+𝛼4)!𝑡𝛼3+2𝛼4

𝛼4!𝛼3!Γ(𝛼3+2𝛼4+1)
+

6×10−6𝑡𝛼3+𝛼4

Γ(𝛼3+𝛼4+1)
+ ⋯

                    (38) 
 

Table 1 is parameter which used in the model and 
given in (Arruda et al., 2015) 

6. Numerical results and discussion 

The numerical results of susceptible cells, 
infected cells, free virus in a body, defense cells and 
activated defense cells are established by using 
LADM. To observe the effect of parameters suing in 
model and given in Table 1 with initial conditions 
(0) = 1000𝑚𝑚,  𝑦(0) = 0, 𝑣(0) = 10−3𝑚𝑚, 𝑧(0) =
500 𝑚𝑚, 𝑍𝑎(0) = 0. For the reliable investigation, 
evaluation is made for different values of 𝛼. From 
Figs. 1–5, we observe that fractional order HIV 
Immunology model has more degree of freedom as 
compared to ordinary derivatives.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1: Numerical solution for susceptible cells 𝑥(𝑡) in a time t (days) at different values of 𝛼 
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Fig. 2: Numerical solution for Infected cells 𝑦(𝑡) in a time t (days) at different values of 𝛼 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Numerical solution for free virus in a body v(𝑡) in a time t (days) at different values of 𝛼 
 

 
By taking non-integer values of fractional 

parameter, remarkable responses of the 
compartments of the proposed model are obtained. 
Another remarkable point to be considered that we 
used small interval of time because we have 
assumed comparatively small initial values. For large 
interval of time, the initial values to data are taken 
large so that the population may not be negative. For 
different values of 𝛼 solution converges to steady 
state and gives the better convergence by decreasing 
the fractional values of 𝛼. 

7. Convergence analysis 

The obtained series solution is rapidly 
convergent and also converges uniformly to the 

exact solution. We use the classical techniques to 
verify the convergence of the series (34-38). We 
check the condition of convergence of the method by 
using the idea of the following theorem (Abdelrazec 
and Pelinovsky, 2011; Naghipour and Manafian, 
2015). 
 
Theorem.7.1: Let W be a Banach space and 𝐹: 𝑊 →
𝑊 be a contractive nonlinear operator then there 
exit 𝑤, 𝑤′ ∈ 𝑊, ‖𝐹(𝑤) − 𝐹(𝑤′)‖ ≤ 𝑘‖𝑤 − 𝑤′‖, 0 <
𝑘 < 1. Then F has a unique point w such that, 𝐹𝑤 =

𝑤 where 𝑤 = (𝑥(𝑡), 𝑦(𝑡), 𝑣(𝑡), 𝑧(𝑡), 𝑧𝑎(𝑡)). The series 

given in (34-38) by using ADM technique is given as: 
 
𝑤𝑛 = 𝑇𝑤𝑛−1 , 𝑤𝑛−1 = ∑ 𝑤𝑗

𝑛−1
𝑗=1    , 𝑛 = 1,2,3, …  
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and suppose that 𝑤0 ∈ 𝐵𝑟(𝑤) where 𝐵𝑟(𝑤) = {𝑤′ ∈
𝑊: ‖𝑤′ − 𝑤‖ < 𝑟} then we get 
  
(i) 𝑤𝑛 ∈ 𝐵𝑟(𝑤)  
(ii) lim

𝑛→∞
𝑤𝑛 = 𝑤  

 
Proof: For (i) by using mathematical induction for 
n=1, we obtained 
 
‖𝑤0 − 𝑤‖ = ‖𝐹(𝑤0) − 𝐹(𝑥)‖ ≤ 𝑘‖𝑤0 − 𝑤‖  

 

suppose that the statement is true for 1m  then, 
 
‖𝑤0 − 𝑤‖ ≤ 𝑘𝑚−1‖𝑤0 − 𝑤‖ 

 

we get 
 

‖𝑤𝑚 − 𝑤‖ = ‖𝐹(𝑤𝑚−1) − 𝐹(𝑥)‖ ≤ 𝑘‖𝑤𝑚−1 − 𝑤‖ ≤

𝑘𝑚‖𝑤0 − 𝑤‖  
‖𝑤𝑚 − 𝑤‖ ≤ 𝑘𝑛‖𝑤0 − 𝑤‖ ≤ 𝑘𝑛𝑟 ≤ 𝑟  

which implies that  𝑤𝑛 ∈ 𝐵𝑟(𝑤)  
 
(ii) Since 
 
 ‖𝑤𝑚 − 𝑤‖ ≤ 𝑘𝑛‖𝑤0 − 𝑤‖ 𝑎𝑛𝑑 lim

𝑛→∞
𝑘𝑛 = 0  

 
therefore, we have the lim

𝑛→∞
‖𝑤𝑛 − 𝑤‖ = 0 ⇒

 lim
𝑛⟶∞

𝑤𝑛 = 𝑤 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 4: Numerical solution for defense cells 𝑧(𝑡) in a time t (days) at different values of 𝛼 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Numerical solution for activated defense cells 𝑧𝑎(𝑡) in a time t (days) at different values of 𝛼 

 

8. Conclusion 

In this paper, we developed a scheme for 
numerical solution of epidemic fractional HIV 
Immunology model by using Laplace Adomian 
decomposition method. The well-known epidemic 
model namely susceptible cells, infected  cells ,free 

virus in a body, defense cells and activated defense 
cells is considered with and without demographic 
effects. The model represents population dynamics 
during the disease as a set of non-linear coupled 
ordinary differential equations. There is no exact 
solution available in the literature for this model up 
to the best of author’s knowledge. It is observed that 
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the infection rate and reproductive numbers play a 
key role for an epidemic to occur and the epidemic 
can be controlled by vaccination. It is also observed 
that to eliminate the disease, it is not necessary to 
vaccinate whole of the population. The efficiency and 
accuracy of the proposed scheme is provided by 
performing convergence analysis. The effect of 
fractional parameter on our obtained solutions is 
presented through Tables and graphs. It is worthy to 
observe that fractional derivatives show significant 
changes and memory effects as compared to 
ordinary derivatives. 

 
Table 1: Parameters values of HIV model 

Parameters Values Parameters Values 
𝜇𝑥 0.02 𝛽𝑧 5 × 10−6 
𝜇𝑦 0.24 𝛽𝑣 2.4 × 10−5 

𝜇𝑣 2.4 𝑝𝑦 0.02 
𝜇𝑧 0.04 𝑝𝑣 0.02 
𝑘𝑣 360 𝜆𝑥 20 
𝜆𝑧 20   

References  

Abdelrazec A and Pelinovsky D (2011). Convergence of the 
adomian decomposition method for initial‐value problems. 
Numerical Methods for Partial Differential Equations, 27(4): 
749-766.  

Arruda EF, Dias CM, De Magalhaes CV, Pastore DH, Thome RCA, 
and Yang HM (2015) An optimal control approach to HIV 
immunology. Applied Mathematics, 6(6): 1115-1130.  

CDC (1993). National institute on drug abuse (HIV/AIDS 
Prevention Bulletin, Rockville MD). Centers for Disease 
Control and Prevention, Center for Substance Abuse 
Treatment, Atlanta, USA. Available online at: 
https://www.cdc.gov 

CDC (1998). Births and deaths (Preliminary data for national vital 
statistics reports). Centers for Disease Control and Prevention, 
National Center for Health Statistics, Atlanta, USA. Available 
online at: https://www.cdc.gov 

CDC (1999a). HIV/AIDS Surveillance Report 1999 (U.S. HIV and 
AIDS Cases). Centers for Disease Control and Prevention, 
Atlanta, USA. Available online at: https://www.cdc.gov 

CDC (1999b). HIV/AIDS Surveillance Supplemental Report 
Atlanta. Centers for Disease Control and Prevention, Atlanta, 
USA. Available online at: https://www.cdc.gov 

CDC (1999c). Preventing occupational HIV transmission to health 
care workers. Centers for Disease Control and Prevention, 
Atlanta, USA. Available online at: https://www.cdc.gov 

CDC (1999d). Young people at risk--epidemic shifts further 
toward young women and minorities. Centers for Disease 
Control and Prevention, Atlanta, USA. Available online at: 
https://www.cdc.gov 

CDC (1999f). Preventing occupational HIV transmission to health 
care workers. Centers for Disease Control and Prevention, 
Atlanta, USA. Available online at: https://www.cdc.gov 

Friedman SR, Jose B, Deren S, Des Jarlais DC, and Neaigus A 
(1995). A risk factors for human immunodeficiency virus 
seroconversion among out-of-treatment drug injectors in high 
and low seroprevalence cities. American Journal of 
Epidemiology, 142(8): 864-874.  

Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, 
Cummins LB, Arthur LO, Peeters M, Shaw GM, Sharp PM, and 
Hahn BH (1999). Origin of HIV-1 in the chimpanzee Pan 
troglodytes. Nature, 397: 436-441.  

Grella CE, Anglin MD, and Wugalter SE (1995). Cocaine and crack 
use and HIV risk behaviors among high-risk methadone 
maintenance clients. Drug and Alcohol Dependence, 37(1): 15-
21.  

Haq F, Shah K, Rahman G, and Shahzad M (2017). Numerical 
solution of fractional order smoking model via Laplace 
Adomian decomposition method. Alexandria Engineering 
Journal. https://doi.org/10.1016/j.aej.2017.02.015  

Jafari H, Khalique CM, and Nazari M (2011a). Application of the 
Laplace decomposition method for solving linear and 
nonlinear fractional diffusion-wave equations. Applied 
Mathematics Letters, 24(11): 1799-1805.  

Jafari H, Khalique CM, Khan M, and Ghasemi M (2011b). A two-
step Laplace decomposition method for solving nonlinear 
partial differential equations. International Journal of Physical 
Sciences, 6(16): 4102-4109.  

Johnston SJ, Jafari H, Moshokoa SP, Ariyan VM, and Baleanu D 
(2016). Laplace homotopy perturbation method for Burgers 
equation with space-and time-fractional order. Open Physics, 
14(1): 247-252.  

Naghipour A and Manafian J (2015). Application of the Laplace 
Adomian decomposition and implicit methods for solving 
Burgers’ equation. TWMS Journal of Pure and Applied 
Mathematics, 6(1): 68-77.  

Word CO and Bowser B (1997). Background to crack cocaine 
addiction and HIV high-risk behavior: The next epidemic. 
American Journal of Drug and Alcohol Abuse, 23(1): 67–77.  

Zhu T, Korber BT, Nahmias AJ, Hooper E, Sharp PM, and Ho DD 
(1998). An African HIV-1 sequence from 1959 and 
implications for the origin of the epidemic. Nature, 391: 594–
597.  

 

https://www.cdc.gov/
https://www.cdc.gov/
https://doi.org/10.1016/j.aej.2017.02.015
https://www.sciencedirect.com/science/journal/08939659
https://www.sciencedirect.com/science/journal/08939659

	Dynamical behavior of HIV immunology model with non-integer timefractional derivatives
	1. Introduction
	2. Mathematical model
	3. Preliminaries
	4. Mathematical analysis
	5. The Laplace-Adomian decomposition method
	6. Numerical results and discussion
	7. Convergence analysis
	8. Conclusion
	References


